Rutgers University: Algebra Written Qualifying Exam January 2019: Problem 4 Solution

Exercise. Show that the groups of automorphisms of the finite abelian groups $\mathbb{Z}/30\mathbb{Z}$ and $\mathbb{Z}/15\mathbb{Z}$ are isomorphic.

Solution.

The automorphisms of $\mathbb{Z}/30\mathbb{Z}$ are $\phi_k : \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/30\mathbb{Z}$ such that $\phi_k(g) = kg \mod 30$ where $gcd(k, 30) = 1, k \in \mathbb{Z}/30\mathbb{Z}$.

Namely, ϕ_1 , ϕ_7 , ϕ_{11} , ϕ_{13} , ϕ_{17} , ϕ_{19} , ϕ_{23} , ϕ_{29} . Similarly, the automorphisms of $\mathbb{Z}/15\mathbb{Z}$ are $\psi_k : \mathbb{Z}/15\mathbb{Z} \to \mathbb{Z}/15\mathbb{Z}$ such that $\psi_\ell(g) = \ell g \mod 15$ where $\gcd(\ell, 15) = 1$, $\ell \in \mathbb{Z}/15\mathbb{Z}$.

Namely, ψ_1 , ψ_2 , ψ_4 , ψ_7 , ψ_8 , ψ_{11} , ψ_{13} , and ψ_{14}

Let $f : Aut(\mathbb{Z}/30\mathbb{Z}) \to Aut(\mathbb{Z}/15\mathbb{Z})$ be defined by $\phi_k \mapsto \psi_{k \mod 15}$. (It isn't difficult to show that this is an isomorphism, so I am not going to write it out here.)